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Abstract. We show that the number of combinatorially distinct labelled
d-polytopes on n vertices is at most (n/</)<j2"<1+o(1)), as n/d->oo. A similar
bound for the number of simplicial polytopes has previously been proved by
Goodman and Pollack. This bound improves considerably the previous known
bounds. We also obtain sharp upper and lower bounds for the numbers of
real oriented and unoriented matroids with n elements of rank d. Our main
tool is a theorem of Milnor and Thorn from real algebraic geometry.

§1. Introduction. Let c(n, d) denote the number of (combinatorial types
of) d-polytopes on n labelled vertices and let cs(n, d) denote the number of
simplicial rf-polytopes on n labelled vertices. The problem of determining or
estimating these two functions (especially for 3-polytopes) was the subject of
much effort and frustration of nineteenth-century geometers. Although it
follows from Tarski's Theorem on the decidability of first order sentences in
the real field that the problem of computing c(n, d) is solvable (cf. [Gr. pp
91-92]), it seems extremely difficult actually to determine this number even
for relatively small n and d. Both Cayley and Kirkman failed to determine
c(n, 3) or cs(w, 3) despite a lot of effort. Detailed historical surveys of these
attempts were given by Bruckner [Br] and Steinitz [Ste] (see also [Gr. pp.
288-290]). Bruckner [Br] determined c,(n,3) for n«10. Hermes [He] tried
to extend Bruckner's work for « = 11,12, but both his enumeration and
Bruckner's extensive attempts to correct it were incomplete, as shown by Grace
[Gra]. Hermes [He] determined c (n, 3) for n =s 8 and Grace [Gra] determined
cs(ll, 3). More recently, Grunbaum and Sreedharan [GS] determined cs(8,4)
and Altshuler and Steinberg [AS1,AS2] determined c(8,4). Determining
c(n,d) and cs{n, d) for small values of n and d, however, does not, of course,
solve the general problem. Write p = n-d. The cases d =£ 2 or /3 «£ 2 are quite
easy; there is only one polygon with n (unlabelled) vertices and there are
[d2/4] rf-polytopes on d + 2 (unlabelled) vertices, [d/2] of which are simplicial,
(see[Gr. pp. 98-101]).

Using a Gale Diagram, Perles (cf. [Gr. pp. 112-114]) found an explicit
formula for cs (d + 3, d) and determined the asymptotic behaviour of c(d + 3, d)
as d tends to infinity. An explicit formula for c(d + 3, d) was given later by
Lloyd [LI].

The asymptotic behaviour of c(n, 3) and cs(n, 3) was determined almost
precisely by Tutte [Tu] and by Richmond and Wormald [RW], (see also [Gr.
pp 289-290]). However, as mentioned in [Gr. p 290], it seems that the determi-
nation of cs(n, d) or c(n, d) for d 5= 4 and ns; d + 4 is a problem of an entirely
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different order of magnitude. Until recently, the best general upper bound for
cs(n,d) was ncn . This follows easily from the upper bound theorem
[Kl, M, St], and the argument applies also to bound the number of triangulated
(d-1)-spheres. (Recall that the boundary complex of a simplicial d-polytope
is a triangulated (d-l) sphere, but the converse is false when d, /? ^4) .

A major development was very recently achieved by Goodman and Pollack
[GP2]. A simple configuration of n points in Rd is an ordered n-tuple of points
in general position in Rd. Two such configurations A and B are isomorphic
if there is a bijection <j>: A -» B such that the orientation of each d +1 (ordered)
points is the same as that of their images. By a clever use of a theorem of
Milnor [Mi] from real algebraic geometry Goodman and Pollack showed that
the number of simple configurations of n points in Rd is less than nd(d+1)n.
This is close to the truth at least for fixed d and large n since it is easy to
show that this number is at least

Moreover, their result gives immediately that cs(n,d)^nd(d+l)", improving
considerably the best previously known bound.

In this paper we apply another (similar) theorem of Milnor and Thom to
bound the number of simple and nonsimple configurations of n points in Rd,
and hence to bound the number of arbitrary d-polytopes on M-vertices. We
also slightly improve the bound of [GP2] and show, in particular, that for
fixed d & 2 the numbers of simple or of nonsimple configurations of n points
in Rd both have the form n

d2"(1+o<1)> as n->oo. For polytopes we obtain
nd/4

ffl
and show that the total number of polytopes on n vertices is at most 2"J+O(''2).
Very recently, Kalai [K] showed that the total number of triangulated spheres
on n vertices is at least 22 . Thus, very few of these are boundary complexes
of simplicial polytopes.

Our methods also enable us to obtain sharp bounds on the asymptotic
number of real and complex matroids with n elements of rank d. For fixed d
and n -» oo, these numbers have the form nO(d2n). The total number of complex
matroids on n elements is bounded by 2O<" \ a very small part of the total
number of matroids on n points which is at least 2li(2"/"3/2), as shown by Knuth
[Kn].

Our paper is organized as follows: in Section 2 we apply Milnor's Theorem
to obtain a general bound on the number of sign patterns of a sequence of
polynomials. In Section 3 we deal with the number of real and complex
matroids on n points, and in Section 4 we consider the number of configurations
of n points in Rd. In the final Section 5 we prove our bounds for the number
of d-polytopes.

I §2. The Number of Sign Patterns. Let P},= J>-(x,, x2,..., xn),
• (j= 1 , . . . , m) be real polynomials. For a point c = {ct, cx,..., cn) 6 R" the

sign pattern of the Pj at c is the m-tuple (e, , e2, • • •, em) e {-1,0, l}m, where
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Sj = sign Pj(cu c2,..., cn). The total number of sign patterns as c ranges over
all points of R", denoted by s(Pu..., Pm), is clearly at most 3m. Using a
theorem of Milnor [Mi] (see also Thom [Th]) from real algebraic geometry,
we bound this number by a function of n and the degrees of the Pj. All our
upper bounds in the paper are derived from this bound (and its analogue for
complex polynomials).

We first state Milnor's theorem.

THEOREM 2.1 (Milnor [Mi, Theorem 2]). Let Vbe a variety in Rl, defined
by the polynomial equations

If each polynomial f has degree =s k, then the sum of the Betti numbers of V is
at most k(2k — I) '"1. In particular, the number of connected components of Vis
atmostk(2k-l)'~\

Using this theorem we prove

THEOREM 2.2. Let P, = P , (x , , . . . , xn), . . . , Pm = Pm(xu ...,xn) be real
polynomials. Let dj = deg Pj(^l) be the degree of Pjt l^j^m. Put
/ = {1,2, . . . , m } and let

be a partition of J into h pairwise disjoint parts. Define

k = 4 max I Y dA.

Then the number of sign patterns of the Pj satisfies

Remark 2.3. By taking the trivial partition of / into one part, we conclude
that if r = Yjli dj then s(Pu ..., Pm)ss4r(8r-1)". By using another theorem
of Milnor [Mi, Theorem 3], we can show that in fact

*(/>„..., P m H(2 + 2r)(l + 20 '"1 . (2.1)

For our applications, however, Theorem 2.2 will usually give asymptotically
better bounds. We omit the detailed proof of (2.1).

Proof of Theorem 2.2. Let C £ R" be a finite set of points that represents
all the sign patterns of the Pj. (Clearly there is such a C satisfying |C|«3m).
For c = (Ci, c 2 , . . . , cn)e C and l=s i's= m we denote P;(c1 ; . . . , cn) by Pj(c).
Define e > 0 by

E=§min{|P;(c)|:ceC, l^j^m and Pj(

Let S > 0 satisfy S < e4|/|1, 1 *£ i! «£ h. Define h polynomials fx ,f2, • • -,fh with
variables xx, x2,..., xn, yt, y2,..., yh by

= -y2,- 8+ n (Pj(xt, • • •, xn)- e)\Pj(Xl,..., xn) + e)2.
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The degree o f / is clearly 4 Y.j£jt 4 ^ &• Also, if c = ( c , , . . . , cn) e C then

n (Pj(c)-e)2(Pj(c) + e)2>8,

and hence there exist real values bif... ,bh such that

/ . ( c j , . . . , cn, fc,,..., bh) = 0, ( 1 « i « h).

For c€ C denote by c a real vector ( c , , . . . , cn, &, , . . . , ft,,) that satisfies the
last system. Let V be the variety in R"+h defined by

By definition every vector c(ceC) is a point of V. We now claim that if
cuc2eC represent distinct sign patterns of the PJt then c,, c2 are not in the
same connected component of V. Indeed, if c1,c2eC represent distinct sign
patterns, there exists some l=Sj=£m, such that sign Pj{c^)^ sign Pj(c2). If
jeJ,, this implies, by continuity and the choice of e, that any path in R"+h

joining cx to c2 contains a point ( x , , . . . , xn,yu ...,yh) such that
P / x j , . . . , xn) = e, or P ; (x , , . . . , xn) = - e , i.e., a point where

This point is thus not in V and our claim follows. Since C represents all the
sigp patterns of the Pjt we conclude that the number of sign patterns is at
most the number of connected components of V which is, by Milnor's Theorem
(Theorem 2.1), at most k(2k - l)n+h~\ This completes the proof of the theorem.

For our applications we will also be interested in the number of sign
patterns of complex polynomials. If Qi(z1>..., zn), l=£i=£m, are complex
polynomials and b = (b1,...,bn)eC, the sign pattern of the Q, at b is the
m-tuple (e, , . . . , £ „ ) € {0, l}m, where ej = sign |Q,(ft)|. By applying Theorem
2.2 to the real polynomials /> =(Re Q,)2 + (Im Q)2, l^j^m in the In real
variables Re z{ and Im z,, 1 s=j"=s n, we can bound the number of sign patterns
of the Qj in terms of their degrees. Moreover, since in this case P, 3= 0, we can
slightly improve the estimate by defining here ft = -y2- 8 + Y\ (Pj - e)2. This
gives the following theorem, whose detailed proof is omitted.

THEOREM 2.4. Let Q1(z1,..., zn),..., Qm(zlf..., zn) be complex poly-
nomials. Put 4 = deg Q,(3=l), / = { 1 , 2 , . . . , m} and let J = / , u J2u.. . u Jh be
a partition of J into h pairwise disjoint parts. Define

fc = 4 max ( I dX

Then the number of sign patterns of the Q, is at most

k(2k-l)2n+h-\

§3. The Number of Rational, Real and Complex Matroids. There are
several known asymptotic estimates for the number of nonisomorphic matroids
of several kinds on n points. See [We, pp. 305-308] for bounds on the number
of all matroids on n points, the number of transversal matroids on n points,
and the number of matroids on n points which are representable over a finite
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field with q elements. Knuth [Kn] showed that the number of labelled (simple)
matroids on n points is at least

Here we obtain sharp bounds on the numbers r(nd,Q), r(n,d,R) and
r(n, d, C), which are the numbers of matroids on n points with rank d, which
are representable over the rationals, the reals and the complex numbers,
respectively. Clearly

r(n, d, Q) =£ r(n, d, R) =s r(n, d, C).

Here we show that

n(d-l)^-O(d^(log d+loglog n)/log n) ̂  r ^ d> QJ ̂  ^ ^ Rj

^- (d-l)dn + O(nd loglog n/log n) (% \)

that

r(n d C)=£ ^2 < d~1 ' d"+ o ( n d l 08 l o8"/ | 08 ' ' ) (3 2)

and that for every d =s n

r(n,d,R)^r(n,d,C)^2°^\ (3.3)

We first prove the upper bounds. We begin by considering real matroids.
It is easy to check that every real matroid of rank d is representable in Rd,
i.e., for each point of the matroid we have a vector in Rd and a set of points
is independent, if, and only if, the corresponding vectors are linearly indepen-
dent. Let ( x n , . . . , xld),..., (xnl,..., xnd) € Rd be the vectors representing
our matroid, and consider the set of all (2) d by d determinants det (x,,),
i € { j , , . . . , id},j = 1 , . . . , d, where 1 =£ h < i2 < ... < id =s n. Such a determinant
is non-zero, if, and only if, the corresponding set is a base of the matroid.
Hence the sign pattern of these (d) polynomials of degree d in the dn variables
Xy determines the matroid represented by the given values of the xtj. (In fact,
the sign pattern determines more, and we get here an upper bound on the
number of oriented real matroids—see Section 4). Thus the total number of
matroids is at most the number of sign patterns of the Q) degree d polynomials
in the dn variables xi}. Divide the polynomials into [n/log n] groups, each of
total degree

and apply Theorem 2.2 with

nd~l log n
= [n/logn], k =

(«*-!)!

(and dn variables) to get the upper bound in inequality (3.1). Inequality (3.2)
follows similarly from Theorem 2.4. Inequality (3.3) follows from Remark 2.3
(or Theorem 2.2 with h = l) by noticing that the sum of degrees of our
polynomials is at most (d)d^2"n.
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The only remaining part is the lower bound in equality (3.1). It suffices
to show that

Let M be a labelled set of [n/log «] points in Qd 1, i.e., in the real Euclidean
space of dimension d — l, with all coordinates having rational values. Assume,
further, that the set M is in a generic position. For every subset N^ M,
\N\ = (d-l)2, we define a point p(N)sQd~1 as follows. Let N = N1uN2u
.. .u Nd_! be a partition of N into d — l equal parts, the first consisting of the
first {d -1) points of N, the second consisting of the next (d - 1 ) points of N
and so on. Let Ht be the hyperplane of Rd~l containing the points in Nt and
let p(N) be the intersection point of these hyperplanes. By the generic position
of our points each //, is uniquely defined and p(N) is a point. Also, different
choices of the iV, yield different points p(N). Moreover, as is easily checked,
p(N)eQd~1 (since it is a solution of a linear system of equations with rational
coefficients). We now add to M another labelled set of n-[n/log n] points,
each being one of the p(N). There are

/ [n / logM]\" - [ " / l o g n ]

\(d-iy) -h{n'd)

possibilities for this construction, each supplying a set of n labelled points in
Qd~i. If Xj = (x,i, • • • , xnd-i)) a r e the coordinates of the i-th point, put
yl = {xl,..., *((<*_]), 1). The yt form a representation of a rational matroid on
n points with rank d, in which {ii,...,id} is independent if x f l , . . . , xid span
Kd~l, i.e., are not contained in a hyperplane in Rd~\ It is easy to check that
all our h(n, d) labelled sets of points supply distinct matroids, and the lower
bound of inequality (3.1) follows.

§4. The Number of Configurations. If (Po, Plt..., Pd) is a sequence of d +1
points in Rd, with Pj = (xn,... ,xid) for each i, we say they have positive
orientation, written Po... Pd > 0, if det (Xy)osusd > 0 where xio = 1 for each i.
The conditions Po... Pd < 0 and Po... Pd = 0 are defined similarly. The order
type of a configuration C of n labelled points Pi, P2, • • •, Pn in Rd is a function
w from the set of all (d + l)-subsets of {1,2, ...,n} to {0, ±1}, where for
S = {io,h,---,id} w i t h l ^ « o < i , < . . . < i d « « , w(S) = +l if Pio...Pid>0,
w(S) = - 1 if P j o . . . Pld < 0 , and w(S) = 0 if P , o . . . Pid = 0. The configuration
is simple if w(S) ^ 0 for every such S. Notice that w(S) is just sign det (xikJ),
Q^k,j^d, where Pik - ( x , t l , . . . , xikd) and xikO = 1 for 0 =s k =s d. The order type
of a configuration C of points is sometimes known as the oriented matroid
structure determined by C. (See [GP1] for more details.) Let t(n, d) denote
the number of distinct order types of configurations of n labelled points in
Rd, and let ts(nd) denote the number of order types of simple configurations
of n labelled points in Rd. In [GP1] Goodman and Pollack showed that
t,(n, d)=£ n" . Very recently [GP2], they found a clever way of using a theorem
of Milnor (mentioned in Remark 2.3 above) to prove that

ts(n,d)^nd<d+1)n. (4.1)
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This bound has several interesting applications (see [GP2], [AFR]).
Goodman and Pollack also showed that

ts(n,d)^nd2n(l+o0°sd/logn)). (4.2)

Here we apply Theorem 2.2 to show that the total number of order types
t(n, d) is not much bigger than ts(n, d). In fact we also slightly improve (4.1)
and prove the following theorem, which supplies very sharp estimates for the
asymptotic behaviour of both functions t{n,d) and ts(n,d), at least for n
much greater than d.

THEOREM 4.1.

Proof. The lower bound is just inequality (4.2). (Notice that dd2" =
«d2"logd/ log"). To get the upper bound, notice that t(n d) is just the number
of sign patterns of (d+i) polynomials of degree d in the dn real variables
(xn,..., xid), which are the coordinates of the i-th point. The polynomials
are just all the determinants det (xikJ), O^k,j^d, where xikO = 1 for all k and
1 =s io < i , . . . < id =s n. Split these polynomials into h = [n/log (n/d)] classes,
each of total degree

i — log(n/d).
n d\

Apply Theorem 2.2 with

h = [n/log (n/d)], fe = 4 ^y-

(and dn variables) to conclude that

j \ log (n/d)\ loe<"/d>

Theorem 4.1 implies that if d and n vary and log d/log n->0, then both
ts(n,d) and t(n,d) have the form

{n/d)dMl+oW) = n
d2M1+o(W. (4.3)

In particular we obtain the following.

COROLLARY 4.2. For fixed d>2, as n -* oo

and

With a somewhat more careful computation one can extend the range in
which ts{n, d) and t(n, d) have the form (4.3). The most important cases,
however, seem to be these covered by Corollary 4.2.
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Remark 4.3. By a similar application of Theorem 2.2 one can easily show
that for every n and d,

We omit the details.

Remark 4.4. A linear space P on a set N = {1 ,2 , . . . , «} of n points is a
family L of subsets (called lines) / , , . . . , / , of N, such that every two points
belong to a unique line. If P can be realized by embedding the points in the
plane R2 where L is the set of all maximal collinear subsets of N, P is called
a representable linear space. By Corollary 4.2 (with d = 2) the number of distinct
representable linear spaces on n labelled points is at most n

<4+o(1))". On the
other hand, it is easy to see that the number of distinct linear spaces on n
labelled points is much bigger—it is at least 2("2/6 )+o(">. Indeed, take a fixed
Steiner triple system on 5= n — 3 of our points and let

Bx,B2,...,Bm (m = n2/6+O(n))

be the set of its blocks. For every subset F of the set of these blocks, we define
a linear space on AT whose lines are all the blocks in F together with all pairs
of points {i,j} that do not lie in any common block of F. This supplies
2("2/6)+O(n) distinct linear spaces on AT.

There are obvious generalizations of this remark to higher dimensions.

§5. The Number of Convex Polytopes. Let c(n, d) denote the number (up
to combinatorial isomorphism) of d-polytopes on n labelled vertices and let
cs(n, d) be the number of simplicial d-polytopes on n labelled vertices. The
problem of determining or estimating c(n, d) and cs(n, d) has a long history,
part of which, including some previous results, is outlined in Section 1. Very
recently, Goodman and Pollack [GP2] used their bound for ts(n, d) (see
inequality (4.1) above) to show that

This follows immediately from the fact that the two vertex sets of two
inequivalent simplicial polytopes with vertices in general position in Rd form
distinct simple configurations. Indeed, one can easily check (see, e.g., [GP1])
that the order type of a configuration that spans Rd determines which sets of
its points lie on supporting hyperplanes of its convex hull. This also holds
for non-simple configurations. Hence, the order type of a configuration on a
set N = { 1 , 2 , . . . , « } of n points in Rd which is the set of vertices of a convex
polytope P determines its facets and thus its complete combinatorial type.
This implies that cs(n, d)^c(n, d)^t(n, d), and by Theorem 4.1 and the
remarks following it we obtain:

THEOREM 5.1.
/(2»/i4.n( L— •.to»1°« (»/•') \ \

cs(n, d)^ c(n,d)^(n/d) { ('^"'dl "-<""" >>.

In particular, if n/d-* oo then
d2(OW) (5.1)
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Furthermore, for every d and n

c(n,d)^2n'+o("2\

and hence the total number of polytopes on n points is at most 2" + o <" \

As mentioned in [GP2], one can show that the estimate given for cs(n, d)
and c(n, d) by (5.1) is not so far from the truth. Indeed, one can show that
for n s= 2d

n — d\nd/4

) . (5.2)

To see this, take a cyclic polytope P on the first n/2 points (see [Gr]). Then
P has ^({n-d)/d)d/2 facets. Put the last n/2 labelled points, in all
possibilities, each one "close" to a facet of P. This implies (5.2). In [Sh]
Shemer proved that even the number of (unlabelled) distinct neighbourly
polytopes with n points in Rd is ^nCd", where Hindoo cd = 1/2. By (5.1) this
shows that for fixed d(>4) this number is of roughly the same order of
magnitude as the total number of d-polytopes on n vertices; quite a surprising
fact (especially in view of Motzkin's old conjecture [Mo] that there is only
one neighbourly d-polytope on n points).

We conclude our paper by noting that, as observed by G. Kalai, both
Theorem 4.1 and Theorem 5.1 can be somewhat improved for the case
n-d = o(n). In fact, by being more careful we can prove that, for fixed fi>0

cs(d + p,d)^c(d + p,d)^t(d + /3,d)^ nM~l)d<1+o(l».

We omit the details.

Acknowledgment. I thank J. Goodman and R. Pollack for stimulating
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Note added in proof. A result similar to Theorem 2.2 but for the number
of sign patterns that consist of ±1 terms only was proved by Warren in Trans.
Amer. Math. Soc, 133 (1968), 167-178.
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